Abstract

Due to the steeply increased use of nanomaterials (NMs) for commercial and industrial applications, toxicological assessment of their potential harmful effects is urgently needed. In this study, we compared the DNA-damaging properties and concurrent cytotoxicity of a panel of 10 engineered NMs in three different cell lines in relation to their intrinsic oxidant generating properties. The human epithelial cell lines A549, HK-2 and HepG2 were chosen to represent relevant target organs for NMs in the lung, kidney and liver. Cytotoxicity, evaluated by WST-1 assay in the treatment concentration range of 0.3-80 µg/cm2, was shown for Ag and ZnO NM in all three cell lines. Cytotoxicity was absent for all other NMs, i.e. five types of TiO2 and two types of multiwalled carbon nanotubes. DNA damage, evaluated by the alkaline comet assay, was observed with Ag and ZnO, albeit only at cytotoxic concentrations. DNA damage varied considerably with the cell line. The oxidant generating properties of the NMs, evaluated by electron spin resonance spectroscopy in cell free conditions, did not correlate with their cytotoxic or DNA-damaging properties. DNA damage by the nanosilver could be partly attributed to its surfactant-containing dispersant. The coating of a TiO2 sample with the commercial surfactant Curosurf augmented its DNA-damaging properties in A549 cells, while surface modification with serum tended to reduce damage. Our findings indicate that measurement of the intrinsic oxidant-generating capacity of NMs is a poor predictor of DNA damage and that the cytotoxic and DNA-damaging properties of NMs can vary substantially with experimental conditions. Our study also underlines the critical importance of selecting appropriate cell systems and aligned testing protocols. Selection of a cell line on the mere basis of its origin may provide only poor insight on organ-specific hazards of NMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.