Abstract

AbstractChronic nonspherocytic hemolytic anemia has been observed in a recently described glucose-6-phosphate dehydrogenase (G6PD) variant, G6PDWayne. The mechanical properties of these erythrocytes and other G6PD variants were examined. The deformability of G6PD-deficient erythrocytes was normal, as determined by osmotic scan ektacytometry. and was not significantly affected by hemolytic crisis. In the common varieties of G6PD deficiency, the mechanical stability of the red blood cell (RBC) membrane was greater than normal, but G6PDWayna membranes were abnormally susceptible to shear-induced fragmentation. There was no evidence for a concurrent genetic defect in spectrin, because self-association constants and tryptic digests were normal. The fragility of G6PDWayne membranes appeared to be a consequence of oxidative damage to membrane thiol groups associated with a low glutathione (GSH) level in these RBCs. Associations among GSH level, thiol oxidation, and membrane instability were also found when a larger group of G6PD-deficient RBCs were examined. In normal erythrocytes, 1-chloro-2, 4-dinitro-benzene was used to reduce GSH levels by 50%. Membrane thiol oxidation and membrane fragility both increased when these cells were kept at 4°C for 3 to 5 days. Our findings suggest that chronic depletion of GSH leads to the destabilization of membrane skeleton through oxidation of membrane protein thiols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.