Abstract

Oxeiptosis is a recently discovered caspase-independent, non-inflammatory programmed cell death modality. Current studies suggest that oxeiptosis has crucial effects on biological processes in a variety of diseases. However, the mechanism of oxeiptosis in hepatocellular carcinoma (HCC) remains unclear and no relevant studies have been published. Therefore, this study is intended to investigate the mechanism and prognostic role of oxeiptosis-related genes in HCC. We explored the mechanisms and molecular phenotypes underlying the role of oxeiptosis in HCC through multi-omics analysis. Firstly, we obtained RNA-sequencing and clinical data from public database and divided the samples into trial and validation cohorts in subsequent analyses. We then screened oxeiptosis core genes (OCGs) and screened prognosis-related genes. Based on different molecular markers, we identified the molecular phenotypes of HCC, and the potential OCGs molecular mechanisms were explored. Subsequently, we construct a prognostic prediction system for HCC. Finally, we analyzed the tumor microenvironment and the immune escape phenomenon. We screened a total of 69 OCGs, most of which were prognostic risk factors for HCC. A majority of OCGs were enriched in cell cycle regulation and mitotic processes, which were related to both tumor cell proliferation and death. We identified 2 different molecular typing options with significant differences in prognosis, function, and signaling pathway enrichment between different molecular subtypes. The prognostic prediction model combined with molecular phenotypes and had a good predictive effect. Finally, we found CD4 + T-cell exhaustion in samples with specific molecular phenotypes. Through multi-omics analysis of OCGs, we not only revealed the possible molecular mechanisms of OCGs in HCC but also provided a prognostic prediction system for clinical application through molecular typing and risk scoring model. Meanwhile, we found immune escape mechanisms in HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.