Abstract

Peptide formation from amino acids is thermodynamically unfavorable but a recent study provided evidence that the reaction occurs at the air/solution interfaces of aqueous microdroplets. Here, we show that i) the suggested amino acid complex in microdroplets undergoes dehydration to form oxazolone; ii) addition of water to oxazolone forms the dipeptide; and iii) reaction of oxazolone with other amino acids forms tripeptides. Furthermore, the chirality of the reacting amino acids is preserved in the oxazolone product, and strong chiral selectivity is observed when converting the oxazolone to tripeptide. This last fact ensures that optically impure amino acids will undergo chain extension to generate pure homochiral peptides. Peptide formation in bulk by wet-dry cycling shares a common pathway with the microdroplet reaction, both involving the oxazolone intermediate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call