Abstract

Poplar Cytospora canker, which is mainly caused by Cytospora chrysosperma, is one of the most destructive and widespread tree diseases worldwide. Although oxalic acid (OA) is demonstrated as an important virulence determinant in several necrotrophic fungi, specific functions of OA during pathogenesis remain controversial. Here, we identified three genes (CcOah, CcOdc1, and CcOdc2) directly involved in OA biosynthesis and catabolism in C. chrysosperma. We demonstrated that CcOah is required for OA biogenesis. All three genes were found to be highly upregulated during early infection stages of the poplar stem. The deletion of any of the three genes led to an obvious reduction of pycnidial production but no abnormality of hyphal growth and morphology. Furthermore, the individual deletion strain exhibited significantly limited lesion sizes on poplar twigs and leaves. Exogenous application of OA or citric acid can complement the virulence defects of ΔCcOah and ΔCcOdc1 strains. We further found that the ΔCcOah strain strongly promoted reactive oxygen species burst of poplar leaves during infection. Finally, induced secretion of OA was observed by monitoring color change of the plates after poplar stem extracts were added in the cultures; however, we failed to quantify OA concentration by high-performance liquid chromatography. Taken together, the present results provide insights into the function of OA acting as an important virulence factor of C. chrysosperma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.