Abstract

Oxalic acid is the most abundant low molecular weight organic acid (LMWOA) in many environments and offers enormous prospects for treating Cr(VI) contamination. In this study, laboratory batch experiments were conducted to estimate the roles of oxalic acid in Cr(VI) removal by Penicillium oxalicum SL2. Oxalic acid changed the initial pH and provided a suitable condition for the growth of strain SL2 when the penicillium was applied to bioremediation of Cr(VI) contamination in alkaline soil. Gompertz model analysis indicated that initial pH affected the lag time of the growth curve of strain SL2. Scanning electron microscopy and scanning transmission X-ray microscopy analysis showed strain SL2 sufficiently contacted with contaminated soil and reduced Cr(VI) to Cr(III) in the hyphae. The results suggested that oxalic acid could enhance the bioremediation efficiency of strain SL2 though improving chromium bioleaching from the contaminated soil and strengthening Cr(VI) removal in the leaching solution. This study provided oxalic acid as a green reagent for stimulating Cr(VI) removal by strain SL2 and would expand knowledge on the roles of LMWOA in Cr(VI) bioremediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.