Abstract
BackgroundMicrocalcifications can be the early and only presenting sign of breast cancer. One shared characteristic of breast cancer is the appearance of mammographic mammary microcalcifications that can routinely be used to detect breast cancer in its initial stages, which is of key importance due to the possibility that early detection allows the application of more conservative therapies for a better patient outcome. The mechanism by which mammary microcalcifications are formed is still largely unknown but breast cancers presenting microcalcifications are more often associated with a poorer prognosis.MethodsWe combined Capillary Electrochromatography, histology, and gene expression (qRT-PCR) to analyze patient-matched normal breast tissue vs. breast tumor. Potential carcinogenicity of oxalate was tested by its inoculation into mice. All data were subjected to statistical analysis.ResultsTo study the biological significance of oxalates within the breast tumor microenvironment, we measured oxalate concentration in both human breast tumor tissues and adjoining non-pathological breast tissues. We found that all tested breast tumor tissues contain a higher concentration of oxalates than their counterpart non-pathological breast tissue. Moreover, it was established that oxalate induces proliferation of breast cells and stimulates the expression of a pro-tumorigenic gene c-fos. Furthermore, oxalate generates highly malignant and undifferentiated tumors when it was injected into the mammary fatpad in female mice, but not when injected into their back, indicating that oxalate does not induce cancer formation in all types of tissues. Moreover, neither human kidney-epithelial cells nor mouse fibroblast cells proliferate when are treated with oxalate.ConclusionsWe found that the chronic exposure of breast epithelial cells to oxalate promotes the transformation of breast cells from normal to tumor cells, inducing the expression of a proto-oncogen as c-fos and proliferation in breast cancer cells. Furthermore, oxalate has a carcinogenic effect when injected into the mammary fatpad in mice, generating highly malignant and undifferentiated tumors with the characteristics of fibrosarcomas of the breast. As oxalates seem to promote these differences, it is expected that a significant reduction in the incidence of breast cancer tumors could be reached if it were possible to control oxalate production or its carcinogenic activity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-015-1747-2) contains supplementary material, which is available to authorized users.
Highlights
Microcalcifications can be the early and only presenting sign of breast cancer
Mammary microcalcifications can be classified at the molecular level in two different types well distinguished by their physical and chemical properties. -Type I calcifications that are composed of calcium oxalate (CaOx), are amber in color, partially transparent and form pyramidal structures with relatively planar surfaces. -Type II calcifications that are composed of calcium phosphate, mainly hydroxyapatite (CaP), are grey-white, opaque and form ovoid or fusiform shapes with irregular surfaces [7]
Oxalate levels are increased in human breast tumor tissues In order to study the biological implications of Oxalates within breast tumors, first oxalate concentration was determined using Capillary Electrochromatography (CEC) in both human breast tumor tissues and tumor-adjacent non-cancerous breast tissues
Summary
One shared characteristic of breast cancer is the appearance of mammographic mammary microcalcifications that can routinely be used to detect breast cancer in its initial stages, which is of key importance due to the possibility that early detection allows the application of more conservative therapies for a better patient outcome. The mechanism by which mammary microcalcifications are formed is still largely unknown but breast cancers presenting microcalcifications are more often associated with a poorer prognosis. Some results support the hypothesis that CaOx would be a secretion product whereas CaP could be formed due to an active process similar to the one involved in the physiological mineralization of bone rather than a passive, end stage process associated with cellular degeneration. Other groups find that epithelial cells acquire mesenchymal characteristics and become capable of producing breast CaOx microcalcifications [10,11,12]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.