Abstract

The electronic structures of D(4h)-M(2)(O(2)CH)(4) and the oxalate-bridged complexes D(2h)-[(HCO(2))(3)M(2)](2)(mu-O(2)CCO(2)) and D(4h)-[(HCO(2))(2)M(2)](4)(mu-O(2)CCO(2))(4) have been investigated by a symmetry analysis of their MM and oxalate-based frontier orbitals, as well as by electronic structure calculations on the model formate complexes (M = Mo and W {d(4)-d(4)}, Tc, Ru {d(6)-d(6)}, and Rh {d(7)-d(7)}). Significant changes in the ordering, interactions, and electronic occupation of the molecular orbitals (MOs) arise through both the progression from d(4) to d(7) metals and the change from second to third row transition metals. For M = Mo and W, the highest-occupied orbitals are delta based, while the lowest-unoccupied orbitals are oxalate pi based; for M = Tc, the highest-occupied orbitals are an energetically tight delta-based set of MOs, while the lowest-unoccupied orbitals are MM-based pi. For both Ru and Rh, the highest-occupied MOs are the MM pi* and delta*, respectively, while the lowest-unoccupied MOs, in both instances, are MM-based sigma. With the exception of M = Ru, all of the complexes are closed shell. From the progression M(2) --> [M(2)](2) --> [M(2)](4), we can envision the nature of bandlike structures for a 2-dimensional square grid of formula [M(2)(mu-O(2)CCO(2))](infinity). Only for Mo and W oxalates should good electronic communication between MM centers generate a band of significant width to lead to metallic conductivity upon oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.