Abstract
Oxidative low-density lipoprotein (ox-LDL) is a risk factor for atherosclerosis. Ox-LDL leads to endothelial injury in the initial stage of atherosclerosis. In this study, we investigated the role of ox-LDL in endothelial injury and macrophage recruitment. We demonstrated that ox-LDL promoted a dose-dependent phosphorylation of caveolin-1 in human umbilical vein endothelial cells. Phosphorylated caveolin-1 increased ox-LDL uptake. Intracellular accumulation of ox-LDL induced NF-κB p65 phosphorylation, promoted HMGB1 translocation from nucleus to cytoplasm and cytochrome C release from mitochondria to cytoplasm, and activated caspase 3, resulting in cell apoptosis. NF-κB activation also facilitated cavolin-1 phosphorylation and HMGB1 expression. In addition, caveolin-1 phosphorylation favored HMGB1 release and nuclear translocation of EGR1. Nuclear translocation of EGR1 contributed to cytoplasmic translocation of HMGB1. The extracellular HMGB1 induced the migration of PMBC-derived macrophages toward HUVECs in a TLR4-dependent manner. Our results suggested that ox-LDL promoted HUVECs apoptosis and macrophage recruitment by regulating caveolin-1 phosphorylation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.