Abstract

The detection of a face in a visual scene is the first stage in the face processing hierarchy. Although all subsequent, more elaborate face processing depends on the initial detection of a face, surprisingly little is known about the perceptual mechanisms underlying face detection. Recent evidence suggests that relatively hard-wired face detection mechanisms are broadly tuned to all face-like visual patterns as long as they respect the typical spatial configuration of the eyes above the mouth. Here, we qualify this notion by showing that face detection mechanisms are also sensitive to face shape and facial surface reflectance properties. We used continuous flash suppression (CFS) to render faces invisible at the beginning of a trial and measured the time upright and inverted faces needed to break into awareness. Young Caucasian adult observers were presented with faces from their own race or from another race (race experiment) and with faces from their own age group or from another age group (age experiment). Faces matching the observers’ own race and age group were detected more quickly. Moreover, the advantage of upright over inverted faces in overcoming CFS, i.e., the face inversion effect (FIE), was larger for own-race and own-age faces. These results demonstrate that differences in face shape and surface reflectance influence access to awareness and configural face processing at the initial detection stage. Although we did not collect data from observers of another race or age group, these findings are a first indication that face detection mechanisms are shaped by visual experience with faces from one’s own social group. Such experience-based fine-tuning of face detection mechanisms may equip in-group faces with a competitive advantage for access to conscious awareness.

Highlights

  • Faces are a rich source of important social information

  • The advantage of upright over inverted faces in overcoming continuous flash suppression (CFS), i.e., the face inversion effect (FIE), was larger for own-race and own-age faces. These results demonstrate that differences in face shape and surface reflectance influence access to awareness and configural face processing at the initial detection stage

  • That face detection is supported by perceptual mechanisms distinct from those analyzing specific facial properties such as identity, because face detection and face recognition have fundamentally different computational goals (Tsao and Livingstone, 2008): Whereas recognition mechanisms need to extract facial information that distinguishes individual faces, detection mechanisms need to be sensitive to information that is common to all faces

Read more

Summary

Introduction

Faces are a rich source of important social information. Before this information can be accessed, the presence of a face in a visual scene needs to be detected. Most classical theories of face perception only deal with the perceptual and cognitive operations that are carried out after a face has been detected in a scene (Bruce and Young, 1986; Burton et al, 1999; Haxby et al, 2000) It appears plausible, that face detection is supported by perceptual mechanisms distinct from those analyzing specific facial properties such as identity, because face detection and face recognition have fundamentally different computational goals (Tsao and Livingstone, 2008): Whereas recognition mechanisms need to extract facial information that distinguishes individual faces, detection mechanisms need to be sensitive to information that is common to all faces. Recent models of face perception have incorporated a distinct initial stage of face detection in a hierarchy of face processing stages (de Gelder et al, 2003; Johnson, 2005; Duchaine and Nakayama, 2006; Tsao and Livingstone, 2008)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call