Abstract

Representation independence formally characterizes the encapsulation provided by language constructs for data abstraction and justifies reasoning by simulation. Representation independence has been shown for a variety of languages and constructs but not for shared references to mutable state; indeed it fails in general for such languages. This article formulates representation independence for classes, in an imperative, object-oriented language with pointers, subclassing and dynamic dispatch, class oriented visibility control, recursive types and methods, and a simple form of module. An instance of a class is considered to implement an abstraction using private fields and so-called representation objects. Encapsulation of representation objects is expressed by a restriction, called confinement, on aliasing. Representation independence is proved for programs satisfying the confinement condition. A static analysis is given for confinement that accepts common designs such as the observer and factory patterns. The formalization takes into account not only the usual interface between a client and a class that provides an abstraction but also the interface (often called “protected”) between the class and its subclasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.