Abstract

The liquid-repellent properties of AISI 304 stainless steel surfaces textured with a femtosecond laser were studied, both after spontaneous hydrophobization and when treated with stearic acid and octyltrimethoxysilane. Surface topography has been shown to play a critical role in determining these properties. Although textures containing only LIPSS exhibited poor liquid-repellency, the performance was significantly improved after engraving the microtexture. The most effective topography consisted of 45 µm-wide grooves with a pitch of 60 µm and protrusions covered with a rough microcrystalline structure. Liquid-repellency, chemical treatment efficiency, and UV resistance were compared using derived Owens-Wendt parameters. The surface of femtosecond-laser-textured steel after spontaneous hydrophobization was found to be significantly less stable under UV irradiation than surfaces treated with stearic acid or octyltrimethoxysilane modifiers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.