Abstract

How oocytes are transferred into an oviduct with a receptive environment remains poorly known. We found that glands of the Drosophila female reproductive tract, spermathecae and/or parovaria, are required for ovulation and to promote sperm storage. Reducing total secretory cell number by interferring with Notch signaling during development blocked ovulation. Knocking down expression after adult eclosion of the nuclear hormone receptor Hr39, a master regulator of gland development, slowed ovulation and blocked sperm storage. However, ovulation (but not sperm storage) continued when only canonical protein secretion was compromised in adult glands. Our results imply that proteins secreted during adulthood by the canonical secretory pathway from female reproductive glands are needed to store sperm, while a non-canonical glandular secretion stimulates ovulation. Our results suggest that the reproductive tract signals to the ovary using glandular secretions, and that this pathway has been conserved during evolution. DOI:http://dx.doi.org/10.7554/eLife.00415.001.

Highlights

  • The oviduct must interact extensively with the ovary to receive ovulated eggs in a manner that maximizes successful reproduction and minimizes egg loss and ectopic pregnancy

  • It would be worthwhile to further investigate the roles Notch signaling plays during specific steps in the secretory cell lineage. These differential cell divisions (Figure 3A) probably resemble those extensively characterized during peripheral nervous system development, we initially focused on using this new information to generate glands containing reduced numbers of secretory cells, without disturbing the epithelial portion of the gland

  • Our experiments extend previous knowledge about the role reproductive tract secretions play in storing sperm

Read more

Summary

Introduction

The oviduct must interact extensively with the ovary to receive ovulated eggs in a manner that maximizes successful reproduction and minimizes egg loss and ectopic pregnancy. The growing realization that important aspects of gamete biology have been conserved during evolution suggests that insights into oviduct-ovary signaling may come from studies of model systems. The Drosophila oviduct plays important roles during egg production that may involve communication with the ovary. The oviduct must be prepared to transport each oocyte released from the ovary to the uterus, to mediate its water uptake and eggshell crosslinking, and to position it for efficient fertilization (reviewed in Spradling, 1993). During each cycle of ovulation, just one of the many mature oocytes present in the two ovaries is released into an oviduct. The steroid hormone ecdysone is produced in the adult ovary and is required to maintain egg production (Buszczak et al, 1999), a specific role in ovulation has not been tested

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.