Abstract

Key points in the development of More Electrical Aircraft (MEA) are currently DC power distribution in higher voltage levels (540 V) and the use of disruptive technology such as Wide BandGap (WBG) semiconductors in power inverters. Using WBG components (SiC and GaN) increases the power converter mass density. However, fast switching of WBG components (tens of kV/μs) induces voltage transient overshoots due to parasitic elements within the inverter. In addition, propagation and reflection phenomena along the harness connected to this inverter, even for small lengths, cause a significant voltage overshoot across the loads. Such overvoltage in Adjustable Speed Drives (ASD: association of inverter, harness and motor) supplied by the new HVDC 540 V aeronautical network could be fatal for the Electrical Insulation System (EIS). This paper proposes a fast and accurate modeling methodology to predict transient overvoltage; it allows us to analyze the impact of SiC inverter technology on overvoltage at motor terminals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.