Abstract
The Stratospheric Photochemistry, Aerosols, and Dynamics Expedition (SPADE) made in situ observations of the composition of the lower stratosphere from the NASA ER‐2 aircraft at latitudes from 15°N to 60°N, during November 1992 and April, May and October 1993. SPADE followed the Airborne Arctic Stratospheric Expedition II (AASE‐II, September 1991 to March 1992) by 8 months. Together the two missions provide a record of stratospheric trace species and aerosols at middle and high latitudes spanning the input and decay of debris from the eruption of Mt. Pinatubo. New instruments deployed for SPADE include sensors to measure OH, HO2, H2O, CO2, NO2 and the UV/visible radiation field, complementing sensors previously deployed on the ER‐2 (ClO, BrO, NO, NOy, N2O, O3, H2O, HCl, CH4, CFC‐11, CFC‐113, and aerosol number and size distribution). The data provide the first simultaneous in situ measurements of radicals and reservoir species to include representatives from all the important families of stratospheric reactants, observed as functions of time of day (at ∼18 km), latitude and altitude (15–20 km). The results place strong new constraints on models of stratospheric photochemistry. For example, measurements of the radicals HO2, NO2, ClO and BrO allow for a nearly completely empirical evaluation of local rates for photochemical removal of ozone (by known catalytic cycles).Highly precise observations of the seasonal cycle and interannual changes in CO2, combined with data for N2O and other tracer species, provide new insights into rates for transport in the lower stratosphere. High resolution data obtained during SPADE by the ER‐2 (in its own wake) and in AASE‐II by the DC‐8 (in wakes from commercial aircraft) provide support for engineering models of NOx emissions from subsonic jet aircraft at cruise conditions. Observations from the DC‐8 during AASE‐II, defining global distributions of NOx and NOy near the tropopause, and of HF, HCl, ClNO3, and HNO3 column abundances, provide new information on the processes influencing polar ozone loss.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.