Abstract

Metagenomics poses opportunities for clinical and public health virology applications by offering a way to assess complete taxonomic composition of a clinical sample in an unbiased way. However, the techniques required are complicated and analysis standards have yet to develop. This, together with the wealth of different tools and workflows that have been proposed, poses a barrier for new users. We evaluated 49 published computational classification workflows for virus metagenomics in a literature review. To this end, we described the methods of existing workflows by breaking them up into five general steps and assessed their ease-of-use and validation experiments. Performance scores of previous benchmarks were summarized and correlations between methods and performance were investigated. We indicate the potential suitability of the different workflows for (1) time-constrained diagnostics, (2) surveillance and outbreak source tracing, (3) detection of remote homologies (discovery), and (4) biodiversity studies. We provide two decision trees for virologists to help select a workflow for medical or biodiversity studies, as well as directions for future developments in clinical viral metagenomics.

Highlights

  • Unbiased sequencing of nucleic acids from environmental samples has great potential for the discovery and identification of diverse microorganisms (Tang and Chiu, 2010; Chiu, 2013; Culligan et al, 2014; Pallen, 2014)

  • We present an overview and critical appraisal of available virus metagenomic classification tools and present guidelines for virologists to select a workflow suitable for their studies by (1) listing available methods, (2) describing how the methods work, (3) assessing how well these methods perform by summarizing previous benchmarks, and (4) listing for which purposes they can be used

  • An overview of all publications, workflows and scoring criteria is available in Data Sheet 1 and on https://compare.cbs.dtu.dk/inventory#pipeline

Read more

Summary

Introduction

Unbiased sequencing of nucleic acids from environmental samples has great potential for the discovery and identification of diverse microorganisms (Tang and Chiu, 2010; Chiu, 2013; Culligan et al, 2014; Pallen, 2014). We know this technique as metagenomics, or random, agnostic or shotgun high-throughput sequencing. Metagenomics techniques enable the identification and genomic characterisation of all microorganisms present in a sample with a generic lab procedure (Wooley and Ye, 2009). The fields of virus discovery and biodiversity characterisation have seized the opportunity to expand their knowledge (Cardenas and Tiedje, 2008; Tang and Chiu, 2010; Chiu, 2013; Pallen, 2014)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.