Abstract
The SPARC tokamak is a critical next step towards commercial fusion energy. SPARC is designed as a high-field ($B_0 = 12.2$T), compact ($R_0 = 1.85$m,$a = 0.57$m), superconducting, D-T tokamak with the goal of producing fusion gain$Q>2$from a magnetically confined fusion plasma for the first time. Currently under design, SPARC will continue the high-field path of the Alcator series of tokamaks, utilizing new magnets based on rare earth barium copper oxide high-temperature superconductors to achieve high performance in a compact device. The goal of$Q>2$is achievable with conservative physics assumptions ($H_{98,y2} = 0.7$) and, with the nominal assumption of$H_{98,y2} = 1$, SPARC is projected to attain$Q \approx 11$and$P_{\textrm {fusion}} \approx 140$MW. SPARC will therefore constitute a unique platform for burning plasma physics research with high density ($\langle n_{e} \rangle \approx 3 \times 10^{20}\ \textrm {m}^{-3}$), high temperature ($\langle T_e \rangle \approx 7$keV) and high power density ($P_{\textrm {fusion}}/V_{\textrm {plasma}} \approx 7\ \textrm {MW}\,\textrm {m}^{-3}$) relevant to fusion power plants. SPARC's place in the path to commercial fusion energy, its parameters and the current status of SPARC design work are presented. This work also describes the basis for global performance projections and summarizes some of the physics analysis that is presented in greater detail in the companion articles of this collection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.