Abstract

Disulfide bonds play a critical role in the maintenance of the native conformation of proteins under thermodynamic control. In general, disulfide bond formation is associated with protein folding, and this restricts the formation of folding intermediates such as misbridged disulfide isomers or kinetically trapped conformations, which provide important information related to how proteins fold into their native conformation. Therefore, numerous studies have focused on the structural analysis of folding intermediates in vitro. However, isolating or trapping folding intermediates, as well as the entire proteins, including mutant proteins, is not an easy task. Several chemical methods have recently been developed for examining peptide and protein folding and for producing, e.g., intact, post-translationally modified, or kinetically trapped proteins, or proteins with misbridged disulfide bonds. This overview introduces chemical methods for regulating the formation of disulfide bonds of peptides and proteins in the context of the thermodynamic and kinetic control of peptide and protein folding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.