Abstract

This study gives an overview of the most relevant processing and performance properties of a wide selection of biobased and biodegradable plastic materials that are currently commercially available. It provides the most extensive and up-to-date scientific overview of critical properties of biobased and biodegradable plastics. Materials that are tested include fully biobased polymers (polylactic acid, polyethylene, polyamide 10,10 and a range of polyhydroxy alkanoates), partially biobased polymers (polybutylene succinate, polybutylene succinate adipate, cellulose acetate, cellulose acetate propionate, polyethylene terephthalate, polytrimethylene terephthalate, an isosorbide based polycarbonate, a thermoplastic urethane and a starch based blend) and a number of fossil-based materials (polycaprolactone, polybutylene adipate terephthalate, polyglycolic acid and polypropylene). The mechanical (tensile, flexural, impact resistance and hardness), thermal (glass transition temperature, melting temperature, melt-flow index and haul-off force) and barrier (oxygen transmission rate, water vapour transmission rate) properties of all these materials were measured and are presented in a comprehensive overview. This overview shows that the majority of functionalities that are currently being offered by fossil based polymers can be met by biobased alternatives and by biodegradable materials if this is considered to be favourable at end-of-life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.