Abstract

In this article, we provide a brief overview of the EEG-based classification of motor imagery activities using machine learning methods. We examined the effect of data segmentation and different neural network structures. By applying proper window size and using a purely convolutional neural network, we achieved 97.7% recognition accuracy on data from twenty subjects in three classes. The proposed architecture outperforms several networks used in previous research and makes the motor imagery-based BCI more efficient in some applications. In addition, we examined the performance of the neural network on a FPGA-based card and compared it with the inference speed and accuracy provided by a general-purpose processor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.