Abstract

Abstract In 2021 JET exploited its unique capabilities to operate with T and D-T fuel with an ITER-like Be/W wall (JET-ILW). This second major JET D-T campaign (DTE2), after DTE1 in 1997, represented the culmination of a series of JET enhancements – new fusion diagnostics, new T injection capabilities, refurbishment of the T plant, increased auxiliary heating, in-vessel calibration of 14MeV neutron yield monitors – as well as significant advances in plasma theory and modelling in the fusion community. DTE2 was complemented by a sequence of isotope physics campaigns encompassing operation in pure tritium at high T-NBI power. Carefully conducted for safe operation with tritium, the new T and D-T experiments used 1 kg of T (vs 100 g in DTE1), yielding the most fusion reactor relevant D-T plasmas to date and expanding our understanding of isotopes and D-T mixture physics. Furthermore, since the JET T and DTE2 campaigns occurred almost 25 years after the last major D-T tokamak experiment, it was also a strategic goal of the European fusion programme to refresh operational experience of a nuclear tokamak to prepare staff for ITER operation. The key physics results of the JET T and DTE2 experiments, carried out within the EUROfusion JET1 work package, are reported in this paper. Progress in the technological exploitation of JET D-T operations, development and validation of nuclear codes, neutronic tools and techniques for ITER operations carried out by EUROfusion (started within the Horizon 2020 Framework Programme and continuing under the Horizon Europe FP) are reported in [1], while JET experience on T and D-T operations is presented in [2].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call