Abstract

ABSTRACTFuture designs for steam power plants are expected to operate at 625–750°C, at which the candidate ferritic/martensitic steels exhibit insufficient steam oxidation resistance. Al-based coatings constitute an alternative to prevent or reduce oxidation. For over 50 years this type of coating has been applied on blades and vanes made of Ni- and Co-based alloys used in the hot section gas of turbines which operate at temperatures higher than 900°C. For these coatings, the mechanism of protection from high-temperature oxidation, is based on the formation and maintenance of a thin layer of dense α-Al2O3. Many articles have been written about the nature, formation and failure mechanism of oxide precursor coatings, under air, at over 900°C. [1–6] However, very little is known regarding alumina scales formed under pure steam at lower temperatures, which is the expected scenario for new steam power plants. This paper covers a recapitulation of the behaviour of Al-based protective oxides formed on coatings with various compositions under steam at 650°C, including new data relative to the formation of said oxides under steam and the microstructure of samples exposed to steam for 70 000 h. It has been shown that on Al containing coatings, such as diffusion Fe aluminides and FeCrAls, alumina forms under steam at 650°C. Provided that a critical content of Al is maintained underneath the scale, Al2O3 is very stable, surpassing 70 000 h under steam at 650°C, without evidence of spallation (testing is still ongoing). The industry target for coatings in this cases is 100 000 h. In turn, the critical Al content depends on the coating's Cr content, and if the oxidation takes place at temperatures of 900°C or higher, under air. However, under steam, alumina phases formation and transformations are different: at 650°C χ-Al2O3 forms initially, and appears to slowly transform unto α-Al2O3. General considerations regarding the stability of protective oxides formed under steam as a function of the composition of the subjacent material will be provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.