Abstract

Tuberculosis (TB) remains one of the leading infectious causes of death worldwide. Detecting and precisely quantifying viable Mycobacterium tuberculosis (M. tuberculosis) is crucial for comprehending mycobacterial pathogenicity; the progression and outcomes of tuberculosis; and the action, efficacy, and resistance of drugs. Fluorescent probes have emerged as indispensable tools for studying the intricate structure and dynamic interactions of M. tuberculosis with its host environment. This minireview underscores the significance of small molecules as fluorescent probes in advancing our understanding of mycobacterial biology and highlights their potential for guiding the development of novel therapeutic interventions against tuberculosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.