Abstract
Advances in agricultural automation, coupled with a general decline of available labour hasgenerated interest in automated harvesting of various crops. Paramount to the success of such systemsis the development of accurate, robust detection technologies and localization strategies. This paperpresents an overview of sensor technologies used in the detection and localization of green aspara-gus spears for robotic harvesting. Tactile, photoelectric, machine vision and time-of-flight sensors areinvestigated and their applicability for use in robotic asparagus harvesting is evaluated. Investigationof previous asparagus harvesting devices has revealed that no such device has yet achieved commer-cial viability. It was identified that this is likely due to weaknesses in currently employed detectiontechnologies, namely slow response times, high sensitivity to changes in ambient lighting conditionsand requirement for frequent manual calibration. Of the sensor technologies investigated it was foundthat time-of-flight cameras, such as the Microsoft Kinect V2 are the most feasible for the detectionof asparagus spears for robotic harvesting. It was concluded that further research would be conductedinto the application of such sensors into a commercially viable harvester.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.