Abstract

The concept of an adaptive aircraft wing, i.e., whose shape parameters such as camber, span-wise twist, and thickness can be varied to optimize the wing shape for various flight conditions, has been extensively studied by numerous researchers. While the aerodynamic benefits (in terms of increased lift/drag ratios, improved maneuverability, and delayed flow separation) have been analytically and experimentally established, the complexity and weight penalty of the designs and actuation using smart materials could potentially alleviate the shortcomings of prior designs, leading the way to a more practical `smart' adaptive wing which responds to changes in flight and environmental conditions by optimally modifying its shape. A summary of recent work in the area of adaptive wing concepts incorporating smart structures technologies is presented. Emphasis is placed on continuing research at Northrop Grumman under a United States Defense Advanced Research Projects Agency contract entitled `Smart Structures and Materials Development-Smart Wing,'. Limitations and potential benefits of adaptive wing designs, applications and advantages of smart material actuators and sensors, and results of recent tests are discussed. Recommendations for future work required to develop an operational smart adaptive wing are also outlined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call