Abstract

This study provides an overview and in-depth analysis of recent advances in stability of linear systems with time-varying delays. First, recent developments of a delay convex analysis approach, a reciprocally convex approach and the construction of Lyapunov–Krasovskii functionals are reviewed insightfully. Second, in-depth analysis of the Bessel–Legendre inequality and some affine integral inequalities is made, and recent stability results are also summarised, including stability criteria for three cases of a time-varying delay, where information on the bounds of the time-varying delay and its derivative is totally known, partly known and completely unknown, respectively. Third, a number of stability criteria are developed for the above three cases of the time-varying delay by employing canonical Bessel–Legendre inequalities, together with augmented Lyapunov–Krasovskii functionals. It is shown through numerical examples that these stability criteria outperform some existing results. Finally, several challenging issues are pointed out to direct the near future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.