Abstract

Diagnosis of early invasive breast cancer relies on radiology and clinical evaluation, supplemented by biopsy confirmation. At least three issues burden this approach: a) suboptimal sensitivity and suboptimal positive predictive power of radiology screening and diagnostic approaches, respectively; b) invasiveness of biopsy with discomfort for women undergoing diagnostic tests; c) long turnaround time for recall tests. In the screening setting, radiology sensitivity is suboptimal, and when a suspicious lesion is detected and a biopsy is recommended, the positive predictive value of radiology is modest. Recent technological advances in medical imaging, especially in the field of artificial intelligence applied to image analysis, hold promise in addressing clinical challenges in cancer detection, assessment of treatment response, and monitoring disease progression. Radiomics include feature extraction from clinical images; these features are related to tumor size, shape, intensity, and texture, collectively providing comprehensive tumor characterization, the so-called radiomics signature of the tumor. Radiomics is based on the hypothesis that extracted quantitative data derives from mechanisms occurring at genetic and molecular levels. In this article we focus on the role and potential of radiomics in breast cancer diagnosis and prognostication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.