Abstract

This paper reviews current techniques on rainfall estimation from satellite sensor observations. The sensors considered in this study are the Precipitation Radar (PR) and radiometer (TMI) onboard TRMM (Tropical Rainfall Measuring Missio) satellite, the Special Sensor Microwave/Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) platforms, and infrared (IR) sensors onboard geostationary satellites. We present the physical basis and mathematical formulation of a newly developed combined radar-radiometer (PR/TMI) retrieval for TRMM and its application for overland rain estimation. Subsequently we discuss the current state-of-the-art in overland passive microwave (TMI and SSM/I) rain estimation techniques, and outstanding issues associated with the inverse problem. The significance of lightning information in advancing high-frequency rainfall estimation from passive microwave-calibrated IR retrieval techniques is discussed on the basis of newly developed techniques. Finally, current approaches are presented on merging the infrequent passive microwave-based rainfall estimates with the high-frequency, but lower accuracy, rainfall fields derived from proxy parameters (e.g., lightning and IR). The paper provides useful insights on satellite rainfall estimation and discusses issues and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.