Abstract

The identification and quantification of metals in microplastics are necessary to determine their exposure levels as well as to understand their potential toxicity in the environment linked to the ubiquity of microplastics. The readiness of effective protocols and measurement techniques for accurate metal quantification is of utmost importance. This first review, based on 28 original articles, provides a systematic assessment of the current protocols for extraction, detection and quantification of metals in microplastics and the challenges associated with them. Quality assurance and quality control measures are also summarized. Great variations of microplastic samples in terms of characteristics, number, mass and unit were noted. Wet acid and microwave acid digestion methods were commonly employed for metal extraction from microplastics using a combination of acids such as HF, HCl, HNO3 and H2SO4 at different concentrations and reaction conditions. Adaptation of one or multiple characterization techniques including, inductively coupled plasma-optical emission spectroscopy, inductively coupled plasma mass-spectrometry, X-ray fluorescence and atomic absorption spectroscopy has been considered. The discrepancies in methodology and elements analyzed between studies produce variable results and troublesome comparison. Having considered the need for a standard procedure, this review highlighted several suggestions towards standardization and recommended perspectives for future research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.