Abstract
With the increasingly stringent control of NOx emissions, NH3-SCR, one of the most effective de-NOx technologies for removing NOx, has been widely employed to eliminate NOx from automobile exhaust and industrial production. Researchers have favored iron-based catalysts for their low cost, high activity, and excellent de-NOx performance. This paper takes a new perspective to review the research progress of iron-based catalysts. The influence of the chemical form of single iron-based catalysts on their performance was investigated. In the section on composite iron-based catalysts, detailed reviews were conducted on the effects of synergistic interactions between iron and other elements on catalytic performance. Regarding loaded iron-based catalysts, the catalytic performance of iron-based catalysts on different carriers was systematically examined. In the section on iron-based catalysts with novel structures, the effects of the morphology and crystallinity of nanomaterials on catalytic performance were analyzed. Additionally, the reaction mechanism and poisoning mechanism of iron-based catalysts were elucidated. In conclusion, the paper delved into the prospects and future directions of iron-based catalysts, aiming to provide ideas for the development of iron-based catalysts with better application prospects. The comprehensive review underscores the significance of iron-based catalysts in the realm of de-NOx technologies, shedding light on their diverse forms and applications. The hope is that this paper will serve as a valuable resource, guiding future endeavors in the development of advanced iron-based catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.