Abstract

Isolated bidirectional DC–DC converters are becoming increasingly important in various applications, particularly in the electric vehicle sector, due to their ability to achieve bidirectional power flow and their safety features. This paper aims to review the switch strategies and topologies of isolated bidirectional DC–DC converters, with a specific focus on their applications in the field of electric vehicles. From the perspective of topology, PWM-type isolated bidirectional DC–DC converters, dual active bridge converters, and resonant-type isolated bidirectional DC–DC converters constitute the three main categories of these converters. The paper further examines the traditional switch strategies of these converters and discusses how specific switch technologies, such as single-phase shift, expanding-phase shift, double-phase shift, and triple-phase shift, can enhance the overall performance of isolated bidirectional DC–DC converters. The paper meticulously examines the characteristics of each topology and control scheme, as well as their typical use cases in practical applications. Particularly, the paper delves into the applications of isolated bidirectional DC–DC converters in the electric vehicle sector and draws conclusions regarding their potential and trends in future electric vehicle technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.