Abstract
The recently growing demand for production and applications of microscale devices and systems has motivated research on the behavior of small volume materials. The computational models have become one of great interests in order to advance the manufacturing of microdevices and to reduce the time to insert new product in applications. Among the various numerical and computational techniques, still the approaches in the context of continuum theories are more preferable due to their minimum computational cost to simulation on realistic time and material structures. This paper reviews the methods to address the thermal and mechanical responses of microsystems. The focus is on the recent developments on the enhanced continuum theories to address the phenomena such as size and boundary effects as well as microscale heat transfer. The thermodynamic consistency of the theories is discussed and microstructural mechanisms are taken into account as physical justification of the framework. The presented constitutive model is calibrated using an extensive set of microscale experimental measurements of thin metal films over a wide range of size and temperature of the samples. An energy based approach is presented to extract the first estimate of the interface model parameters from results of nanoindentation test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.