Abstract

The sensational 1980 eruption ofMount St.Helens and the subsequent ecological responses are the most thoroughly studied volcanic eruption in theworld. The posteruption landscapewas remarkable, and nearly a quarter century of study has provided awealth of information and insight on a broad spectrum of ecological and physical responses to disturbance. The eruption and its effects on ecological and geophysical systems have many dimensions: a complex eruption affected an intricate landscape containing forests, meadows, lakes, and streams populated by diverse fauna and flora. This complexity created a rich environment and an exemplary living laboratory for study. Because the volcano is in close proximity to major metropolitan areas, scientists were able to perform reconnaissance trips and establish a network of permanent plots within days to months of the eruption. These early observations enabled scientists to assess the initial impacts of the eruption, which was important in understanding the subsequent quarter century of invasion and succession. Suddenly, and almost beyond comprehension, at 8:32 a.m. on May 18, 1980, and lasting for little more than 12 hours, the eruption of Mount St. Helens transformed more than 600 km2 of lush, green forest and meadows and clear, cold lakes and streams to a stark gray, ashand pumice-covered landscape (see Figure 1.1; Swanson et al., Chapter 2, this volume; Swanson and Major, Chapter 3, this volume). The area influenced by the eruptive events will respond to them for hundreds or even thousands of years. However, even within the 24 years since the eruption, substantial change took place as hill slopes gradually turned from gray to green, opaque lakes cleared, and streams flushed sediment from their channels. Some of the initial ecological responses are well advanced; others have been set back by secondary disturbances; and yet others, such as soil development, will respond to the eruption over millennia. The major 1980 eruption created distinctive disturbance zones that differed in the types and magnitudes of impacts on terrestrial and aquatic systems, including the types and amounts of surviving organisms and other legacies of the preeruption ecological systems (Figure 20.1). Thereafter, the natural system consisting of surviving and colonizing plants, fungi, animals, andmicrobes began responding to the new conditions. During the subsequent decades, species diversity, plant cover, and vegetation structure (the size and shape of plants) developed rapidly. Vegetation in 2005 ranged from herbs and scattered shrub cover in the severely disturbed pyroclastic-flow zone to the continuous canopy of young forest in tree plantations around the perimeter of the blast area. The story of this collective ecological response to the 1980 eruption of Mount St. Helens involves both successional change over time at individual sites and development of landscape patterns. The 1980 eruption provided a special opportunity for scientists from a variety of disciplines to study ecological survival and establishment after a large disturbance, but several caveats challenge efforts to integrate this information. Developing a synthesis of ecological responses to the eruption is complicated by three factors:

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.