Abstract

Abstract Aeroelastic flutter is a dynamically complex phenomenon that has adverse and unstable effects on elastic structures. It is crucial to better predict the phenomenon of flutter within the scope of aircraft structures to improve the design of their wings. This review aims to establish fundamental guidelines for flutter analysis across subsonic, transonic, supersonic, and hypersonic flow regimes, providing a thorough overview of established analytical, numerical, and reduced-order models as applicable to each flow regime. The review will shed light on the limitations and missing components within the previous literature on these flow regimes by highlighting the challenges involved in simulating flutter. In addition, popular methods that employ the aforementioned analyses for optimizing wing structures under the effects of flutter—a subject currently garnering significant research attention—are also discussed. Our discussion offers new perspectives that encourage collaborative effort in the area of computational methods for flutter prediction and optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.