Abstract
The cold chain (refrigerated supply chain) is an important application of refrigeration technologies. The capacity of the cold chain industry is growing rapidly in emerging economies such as China, leading to significant environmental impacts, especially greenhouse gas (GHG) emissions. By conducting the literature review, this study begins with presenting a comprehensive overview of the cold chain industry in China. We observed that China has a large total cold warehouse capacity but low capacity per capita. Then, we directly link the example of the cold chain in China to the methods of evaluating the GHG emissions from the cold chain industry. It is observed that existing studies either primarily focus on the lifecycle of food with less consideration on the cold chain facilities or primarily focus on the lifetime of a certain stage of the cold chain (e.g., refrigerated transportation) with less consideration on food. Neither frameworks capture the entire cold chain system. Moreover, we argue that existing studies lack investigations of the cold chain GHG emissions on the national scale. To evaluate the overall GHG emissions, we recommended that one can use the bottom-up approach. First, use the lifecycle assessment (LCA) to estimate the single-unit level (e.g., one kg food, one particular refrigerated warehouse) cold chain emissions. Second, aggregate up to the national scale by the distribution patterns of the cold chain networks. Finally, we identify the crucial future issues regarding collecting cold chain lifecycle inventory data, investigating the cold chain network and the overall environmental impacts in China, regulation and technology needs for expanding the clean refrigeration technologies, and the implications of the cold chain development to water, land, and society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.