Abstract

Photodynamic Therapy (PDT) is a non-invasive treatment for different pathologies, cancer included, using three key components: non-toxic light-activated drug (Photosensitizer, PS), visible light, and oxygen. Their interaction triggers photochemical reactions leading to Reactive Oxygen Species (ROS) generation, that mediate cytotoxicity and cell death. In the present paper, the most important findings about the synthetic dye Rose Bengal Acetate (RBAc), an emerging photosensitizer for its efficient induction of cell death, will be reported with the aim to integrate RBAc phototoxicity to novel therapeutic PDT strategies against tumour cells. After its perinuclear intracellular localization, RBAc causes multiple subcellular organelles damage, that is, mitochondria, Endoplasmic Reticulum (ER), lysosomes, and Golgi complex. Indeed, RBAc exerts long-term phototoxicity through activation of both caspase-independent and- dependent apoptotic pathways and autophagic cell death. In particular, this latter cell death type may promote cell demise when apoptotic machinery is defective. The deep knowledge of RBAc photocytotoxicity will allow to better understand its potential photomedicine application in cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.