Abstract

Global demand for transportation fuels is projected to increase 40% by 2040, and biomass-derived fuels (biofuels) play a crucial role in substituting fossil fuels and mitigating greenhouse gas emissions. Currently, biofuels are mainly consumed as blendstocks combined with petroleum-based fuels, and effective conversion technologies can address the quality challenges for offering standalone biofuels. Thermochemical conversion process is one of the most promising pathways among existing technologies for biofuel production. However, the major barriers are unwanted characteristics (e.g., thermal instability) of intermediate products, such as bio-oil, and required upgrading treatments for producing compatible fuels. This study highlights the merits and critical challenges of thermochemical conversion and physicochemical upgrading technologies for bio-blendstock production from lignocellulosic biomass. The novelty of this study lies in potential directions for future research through both critical and systematic literature reviews, and the proposed intensified process for lignocellulosic-based fuel blendstocks production. It is concluded that recovery and fractionation strategies (e.g., quenching and stripping) can maximize process yields and add values in the efficient conversion pathways. Effective quenching can stop secondary free radical reactions and improve liquid yields over gas and solid yields. Stripping process can improve process yield, catalyst lifespan, and thermal stability. It is further concluded that physicochemical treatments are not as effective as thermochemical treatments, but have advantages of mild operating conditions and potential for integrated solutions in conjunction with other treatments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.