Abstract

In this paper, the metal source/drain (S/D) Schottky-barrier (SB) MOSFET technology is reviewed. The technology offers several benefits that enable scaling to sub-30-nm gate lengths including extremely low parasitic S/D resistance (1% of the total device resistance), atomically abrupt junctions that enable the physical scaling of the device to sub-10-nm gate lengths, superior control of OFF-state leakage current due to the intrinsic Schottky potential barrier, and elimination of parasitic bipolar action. These and other benefits accrue using a low-thermal-budget CMOS manufacturing process requiring two fewer masks than conventional bulk CMOS. The SB-CMOS manufacturing process enables integration of critical new materials such as high-k gate insulators and strained silicon substrates. SB MOSFET technology state of the art is also reviewed, and shown to be focused on barrier-height-lowering techniques that use interfacial layers between the metal S/Ds and the channel region. SB-PMOS devices tend to have superior performance compared to NMOS, but NMOS performance has recently improved by using ytterbium silicide or by using hybrid structures that incorporate interfacial layers to lower the SB height.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.