Abstract
This study characterises the flow velocity of individual extreme waves that overtop promenades using the bubble image velocimetry (BIV) technique (Ryu et al., 2005). Experimental tests were carried out in the small-scale wave flume CIEMito, at the Marine Engineering Laboratory (LIM) of the Universitat Politècnica de Catalunya – BarcelonaTech (UPC), and the obtained images were post-processed to calculate the flow velocities. The ultimate objective of the experimental campaign is to develop more precise models for forecasting wave overtopping of structures with an emergent toe, commonly found on sandy beaches and frequently utilized as promenades or waterfronts in most urbanized coastal environments. The NewWave theory (Tromans et al., 1991) was used to simulate the extreme individual wave overtopping in a real random sea state. The NewWave theory establishes a correlation between the expected form of a large wave in a linear sea state and the bulk characteristics of the sea state. Using focused wave groups instead of long-duration irregular wave time series offers several benefits. It improves the ability to repeat experiments and enhances measurement capabilities by providing greater temporal resolution in models used to investigate significant wave interactions (Hofland et al., 2014). Additionally, due to the compactness of focused wave groups, wave absorption becomes unnecessary. The research identifies two distinct case studies with varying wave forcing, tidal regimes and coastal layouts. This work presents a case study of a typical Mediterranean Sea configuration, which is a micro-tidal environment with steep and relatively short foreshores and pocket beaches. The study aims to characterize the overtopping flow velocity on the selected structure, and the feasibility of non-intrusive measurements such as a BIV technique has been investigated. The work includes preliminary results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: CoastLab 2024: Physical Modelling in Coastal Engineering and Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.