Abstract

Atmospheric photochemistry induced by solar excitation of vibrational overtone transitions has recently been demonstrated to be of importance in cleaving weak bonds (in HO(2)NO(2)) and inducing intramolecular rearrangement followed by reaction (in H(2)SO(4)). Here, we propose another potentially important process: the decarboxylation of organic acids. To demonstrate this possibility, we have calculated the decarboxylation pathways for malonic acid and its monohydrate. The barrier to the gas-phase decarboxylation was calculated to be in the range 26-28 kcal/mol at the B3LYP/6-311++G(3df,3pd) level of theory, in good agreement with previous results. The transition state is a six-membered ring structure which is accessed via concerted O-H and C-C stretches; excitation of v(OH) > or = 3 of either one of the OH stretching modes is sufficient to supply the energy needed for the decarboxylation. A low-energy isomer of the malonic acid-water complex forms an eight-membered, multiply hydrogen bonded structure, bound by 3-6 kcal/mol, somewhat less stable than the lowest energy, six-membered ring isomer. Decarboxylation of such complexes uses water as a catalyst; the water accepts an acidic proton from one malonic acid group and transfers a proton to the carbonyl of the other acid group. The barrier for this process is 20-22 kcal/mol, suggesting that complexes excited to v(OH) > or = 2 possess sufficient energy to react. Using estimated absorption cross sections for the OH overtone transitions, we suggest that the overtone-induced decarboxylation of malonic acid and its water complex is competitive with wet deposition of the acid and with gas-phase reaction with OH for removal of the acid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.