Abstract
Humans are seamless in their ability to efficiently and reliably generate fingertip forces to gracefully interact with objects. Such interactions rarely end in awkward outcomes like spilling, crushing, or tilting given advanced motor planning. Here we combine multiband imaging with deconvolution- and Bayesian pattern component modeling of functional magnetic resonance imaging data and in-scanner kinematics, revealing compelling evidence that the human brain differentially represents preparatory information for skillful object interactions depending on the saliency of visual cues. Earlier patterned activity was particularly evident in ventral visual processing stream-, but also selectively in dorsal visual processing stream and cerebellum in conditions of heightened uncertainty when an object’s superficial shape was incompatible rather than compatible with a key underlying object feature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.