Abstract
Abstract Communities across trophic levels, and the functional roles they play, are vital for the sustained provision of ecosystem services. In forest systems, diversification of overstorey composition has been shown to be a key driver of biodiversity, but its influence on across‐trophic level relationships remains scarcely known. Species across trophic levels in varied overstorey compositions are also differentially susceptible to fragmentation context. We hypothesise that fragmentation will disrupt community relationships associated with particular overstorey compositions. We test this hypothesis using a tree diversity research platform across 53 deciduous woodland plots in central Belgium. We estimate species’ abundances within nine, generally taxonomic, community groups across trophic levels: understorey vegetation; leaf miners and gall formers; woodlice, millipedes; carabid beetles, harvestmen, spiders, birds, bats. We use multiple co‐inertia analyses to examine how taxonomic and trophic role community matrices covary across gradients of overstorey composition, via three different tree species diversification pathways, and fragmentation. For all trophic role groups, across all plots, there was at least one significant pairwise comparison. Apart from comparisons involving bats, there was at least one significant pairwise correlation between taxonomic groups too. These results indicate correlated community matrices across trophic levels. Overstorey composition related to community tightness, that is, the level of co‐ordinated change among taxonomic and/or trophic role groups as revealed by multiple co‐inertia analyses. Notably, diversifying woodlands of beech Fagus sylvatica or red oak Quercus rubra with pedunculate oak Quercus robur correlated with increased taxonomic community tightness. Diversifying pedunculate oak forest stands with other overstorey species related to unchanged community tightness. Evidence was lacking for fragmentation affecting community tightness, singly or by interacting with overstorey composition. Synthesis. Overall, changing tree species composition and fragmentation level affected across‐trophic level community relationships differently. Yet, we demonstrated a clear signal that diversifying monoculture stands with particular species correlated with greater community tightness, and co‐ordinated change among sets of community groups, across trophic levels and regardless of fragmentation context. We postulate that having tighter community relationships suggests that measures to improve biodiversity at one trophic level (i.e. trees) could affect other groups, and their associated roles, in a co‐ordinated manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.