Abstract

The stability of linear convective and acoustic modes in solar envelope models is investigated by incorporating the thermal and mechanical effects of turbulence through the eddy transport coefficients. With a reasonable value of the turbulent Prandtl number it is possible to obtain the scales of motion corresponding to granulation, supergranulation and the five-minute oscillations. Several of the acoustic modes trapped in the solar convection zone are found to be overstable and the most unstable modes, spread over a region centred predominantly around a period of 300 s with a wide range of horizontal length scales, are in reasonable accord with the observed power-spectrum of the five-minute oscillations. It is demonstrated that these oscillations are driven by a simultaneous action of the κ-mechanism and the radiative and turbulent conduction mechanisms operating in the strongly superadiabatic region in the hydrogen ionization zone, the turbulent transport being the dominant process in overstabilizing the acoustic modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.