Abstract

This study on overset meshes for incompressible-flow simulations is motivated by accurate prediction of wind farm aerodynamics involving large motions and deformations of components with complex geometry. Using first-order hyperbolic and elliptic equation proxies for the incompressible Navier-Stokes (NS) equations, we investigate the influence of information exchange between overset meshes on numerical performance where the underlying discretization is second-order accurate. The first aspect of information exchange surrounds interpolation of solution where we examine Lagrange and point-cloud-based interpolation for creating constraint equations between overset meshes. To maintain overall second-order accuracy, higher-order interpolation is required for elliptic problems, but linear interpolation is sufficient for hyperbolic problems in first-order form. Higher-order point-cloud-based interpolation provides a pathway to maintaining accuracy in unstructured meshes, but at higher complexity. The second aspect of information exchange focuses on comparing the approaches of overset single system (OSS) and overset Additive Schwarz (OAS) for coupling the linear systems of the overlapping meshes. While the former involves a single linear system, in the latter the discrete linear systems are solved separately, and solving the global system is accomplished through outer iterations and sequential information exchange in a Jacobi fashion. For the test cases studied, accuracy for hyperbolic problems is maintained by performing two outer iterations, whereas many outer iterations are required for elliptic systems. The order-of-accuracy studies explored here are critical for verifying the overset-mesh coupling algorithms used in engineering simulations. Accuracy of these simulations themselves is, however, quantified using engineering quantities of interest such as drag, power, etc. Consequently, we conclude with numerical experiments using NS equations for incompressible flows where we show that linear interpolation and few outer iterations are sufficient for achieving asymptotic convergence of engineering quantities of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.