Abstract

We consider the efficient quantization of a class of nonbandlimited signals, namely, the class of discrete-time signals that can be recovered from their decimated version. The signals are modeled as the output of a single FIR interpolation filter (single band model) or, more generally, as the sum of the outputs of L FIR interpolation filters (multiband model). These nonbandlimited signals are oversampled, and it is therefore reasonable to expect that we can reap the same benefits of well-known efficient A/D techniques that apply only to bandlimited signals. We first show that we can obtain a great reduction in the quantization noise variance due to the oversampled nature of the signals. We can achieve a substantial decrease in bit rate by appropriately decimating the signals and then quantizing them. To further increase the effective quantizer resolution, noise shaping is introduced by optimizing prefilters and postfilters around the quantizer. We start with a scalar time-invariant quantizer and study two important cases of linear time invariant (LTI) filters, namely, the case where the postfilter is the inverse of the prefilter and the more general case where the postfilter is independent from the prefilter. Closed form expressions for the optimum filters and average minimum mean square error are derived in each case for both the single band and multiband models. The class of noise shaping filters and quantizers is then enlarged to include linear periodically time varying (LPTV)/sub M/ filters and periodically time-varying quantizers of period M. We study two special cases in great detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.