Abstract

By using a simplified Coulomb explosion model, the laser-driven Coulomb explosion processes of three deuterated alkane clusters, i.e., deuterated methane (CD4)N, ethane (C2D6)N and propane (C3D8)N clusters are simulated numerically. The overrun phenomenon that the deuterons overtake the carbon ions inside the expanding clusters, as well as the dependence of the energetic deuterons and fusion neutron yield on cluster size, is discussed in detail. Researches show that the average kinetic energy of deuterons and neutron yield generated in the Coulomb explosion of (C2D6)N cluster are higher than those of (CD4)N cluster with the same size, in qualitative agreement with the reported conclusions from the experiments of (C2H6)N and (CH4)N clusters. It is indicated that (C2D6)N clusters are superior to (CD4)N clusters as a target for the laser-induced nuclear fusion reaction to achieve a higher neutron yield. In addition, by comparing the relevant data of (C3D8)N cluster with those of (C2D6)N cluster with the same size, it is theoretically concluded that (C3D8)N clusters with a larger competitive parameter might be a potential candidate for improving neutron generation. This will provide a theoretical basis for target selection in developing experimental schemes on laser-driven nuclear fusion in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.