Abstract

AbstractSubducting plate (SP) curvature exerts a key control on the amount of bending dissipation associated with subduction, and the magnitude of the subduction‐resisting bending force. However, the factors controlling the development of SP curvature are not well understood. We use numerical models to quantify the role of SP rheology on the minimum radius of curvature, Rmin. We find that Rmin depends strongly on the SP thickness when the rheology is viscous. This dependence is substantially reduced when the SP behaves plastically, in line with the lack of correlation between Rmin and SP thickness on Earth. In contrast, plasticity leads to a strong positive correlation between Rmin and the overriding plate (OP) thickness. Using an analysis of Rmin versus OP thickness, we show that such a positive correlation exists on Earth. This suggests that OP structure, in conjunction with SP plasticity, is crucial in generating slab curvature systematics on Earth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.