Abstract
Convolution quadrature (CQ) methods have enjoyed tremendous interest in recent years as an efficient tool for solving time-domain wave problems in unbounded domains via boundary integral equation techniques. In this paper we consider CQ type formulations for the parallel space-time evaluation of multistep or stiffly accurate Runge--Kutta rules for the wave equation. In particular, we decouple the number of Laplace domain solves from the number of time steps. This allows us to overresolve in the Laplace domain by computing more Laplace domain solutions than there are time steps. We use techniques from complex approximation theory to analyze the error of the CQ approximation of the underlying time-stepping rule when overresolving in the Laplace domain and show that the performance is intimately linked to the location of the poles of the solution operator. Several examples using boundary integral equation formulations in the Laplace domain are presented to illustrate the main results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.