Abstract

ABSTRACTBacteria organize many membrane-related signaling processes in functional microdomains that are structurally and functionally similar to the lipid rafts of eukaryotic cells. An important structural component of these microdomains is the protein flotillin, which seems to act as a chaperone in recruiting other proteins to lipid rafts to facilitate their interaction. In eukaryotic cells, the occurrence of severe diseases is often observed in combination with an overproduction of flotillin, but a functional link between these two phenomena is yet to be demonstrated. In this work, we used the bacterial model Bacillus subtilis as a tractable system to study the physiological alterations that occur in cells that overproduce flotillin. We discovered that an excess of flotillin altered specific signal transduction pathways that are associated with the membrane microdomains of bacteria. As a consequence of this, we detected significant defects in cell division and cell differentiation. These physiological alterations were in part caused by an unusual stabilization of the raft-associated protease FtsH. This report opens the possibility of using bacteria as a working model to better understand fundamental questions related to the functionality of lipid rafts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call