Abstract

AbstractActive‐source seismic surveys have resolved the fine‐scale P‐wave velocity (Vp) of the subsurface structure in subduction forearcs. In contrast, the S‐wave velocity (Vs) structure is poorly resolved despite its usefulness in understanding rock properties. This study estimates Vp and Vs structures of the Nankai Trough forearc, by applying transdimensional inversion to high‐frequency teleseismic waveforms. As a result, a thin (∼1 km) low‐velocity zone (LVZ) is evident at ∼6 km depth beneath the sea level, which is located ~3 km seaward from the outer ridge. Based on its high Vp/Vs ratio (∼2.5) and comparison to an existing seismic reflection profile, we conclude that this LVZ reflects a high pore pressure zone at the upper portion of the underthrust sediment. We infer that this overpressured underthrust sediment hosts slow earthquake activities and that accompanied strain release helps impede coseismic rupture propagation further updip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.